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Abstract—The nature of the spectral gap at forward endfire
for a periodic leaky-wave structure consisting of an infinite array
of metallic strips on a lossless grounded dielectric layer is studied
and compared with that for a simple grounded dielectric layer.
The conclusions reached are expected to be valid for a general
class of open periodic structures. One of the interesting features
of the periodic structure is that a different branch choice is
possible for each of the infinite number of space harmonics
(although most of these will be nonphysical). This leads to an
infinite number of steepest descent planes (SDP’s) for the modal
solutions, instead of only one as for the dielectric layer. As a
result, one finds some interesting differences in the spectral-gap
behavior, compared with that for the dielectric layer. One basic
difference is that the nature of the spectral gap depends on
whether or not a second space harmonic begins radiating before
the main radiating harmonic is scanned to forward endfire. The
spectral gap resembles that for alossy dielectric layer when a
second space harmonic is also radiating, and resembles that for
a losslessdielectric layer otherwise. In addition, for the latter
of these cases, the purely bound solution (which has a real
propagation wavenumber and which occurs at the high-frequency
end of the spectral gap) is physical only over a small frequency
range, in contrast to the dielectric layer case, where that solution
is present and physical at all higher frequencies. These behavioral
differences are explained in detail in this paper.

Index Terms—Leaky-wave antennas, leaky waves, periodic
structures.

I. INTRODUCTION

T HE STUDY of spectral gaps in the propagation of leaky
modes on various guiding structures has been the subject

of considerable recent interest [1], [2]. The spectral-gap region
is a transition region in frequency within which a guided
mode changes from a physically meaningful leaky mode to
a bound surface-wave mode. This transition region typically
occurs as the beam radiated by the leaky mode is scanned to
endfire. In the transition region, the leaky mode loses physical
meaning while a surface-wave solution becomes physically
meaningful. An understanding of the spectral-gap region is
important in order to obtain a physical description of how
the various radiating modes on a structure evolve. Although
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Fig. 1. Leaky-wave guiding structure consisting of an infinite array of
metallic strips over a lossless grounded dielectric layer.

such an understanding is reasonably complete for simple
structures such as a grounded slab waveguide, the spectral gap
is understood relatively poorly forperiodicstructures. The goal
of this paper is to obtain a basic understanding of the nature
of the spectral gap for a periodic structure.

The specific guiding structure that will be analyzed is the
periodic strip-grating structure, shown in Fig. 1. It consists
of a periodic array of infinitesimally thin perfectly conduct-
ing strips on a lossless grounded substrate. Although this
one-dimensional (1-D) structure is chosen for simplicity, the
conclusions reached here are expected to be valid for a general
class of open periodic structures, for which radiation may
occur from one or more of the space harmonics.

One of the interesting features of the periodic structure is
that a different branch choice for the transverse wavenumber
is mathematically possible for each of the infinite number of
space harmonics . That is, each wavenumber

may be chosen to be proper (so that the space harmonic
decays in the -direction) or improper (increasing in the

-direction). This leads to an infinite number of SDP’s for
the modal solutions, instead of only one as for the simple
dielectric layer. Although all of the solutions obtained from
the different branch choices are mathematically valid, most
of the solutions are completely nonphysical. For the space
harmonics that are well into the slow-wave region ( ),
the solution will only have physical meaning provided that
the proper branch choice is taken. On the other hand, for a
radiating space harmonic, it is well-known that the physical
choice is theimproper one when the mode is in the forward
radiating (fast-wave) region. When the frequency increases and
the main radiating harmonic ( ) enters into the slow-
wave region, the physical choice for this harmonic becomes
the proper one. Hence, as frequency increases and the main
radiating harmonic passes through forward endfire, physical
meaning shifts between a solution where the main radiating
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Fig. 2. Dielectric-inset waveguide leaky-wave antenna. The analysis method
used for the simple structure of Fig. 1 applies for this practical antenna
structure as well (see text).

harmonic is improper to one where it is proper. This transition
region in frequency is the spectral-gap region.

The spectral-gap behavior of the periodic structure is com-
plicated by the fact that there may be two space harmonics that
simultaneously radiate, depending on the frequency and the
strip spacing (it is assumed in the treatment here that two is the
maximum number of space harmonics that can simultaneously
radiate, since this would cover almost all practical cases).
Because of this, there arefour modal solutions that participate
in the spectral gap, as opposed to two for the dielectric layer.
One of the interesting conclusions from this study is that the
nature of the spectral gap is different, depending on whether
or not a second space harmonic ( ) begins radiating
before the main radiating harmonic reaches forward endfire.

Although the analysis is performed for the idealized 1-D
strip-grating structure, the analysis also directly applies to
the dielectric inset waveguide leaky-wave antenna shown in
Fig. 2. This structure is, in essence, a leaky rectangular wave-
guide (the polarization of the electric field in the waveguide
region is labeled in the figure). If the baffle lengthis infinite,
the analysis is exactly the same as the one for the structure
in Fig. 1; otherwise, a simple modification is necessary to
account for the discontinuity at the baffle–air interface [3].
The baffle allows the higher order modes excited by the grating
to decay before reaching the aperture, which results in better
polarization purity of the radiated beam. This structure is
a promising candidate for millimeter-wave applications due
to its mechanical simplicity, low-loss behavior, and flexible
radiation characteristics [4].

II. BACKGROUND

In this section the basic properties of the spectral gap
for a simple grounded dielectric layer are reviewed. A more
complete discussion may be found in [2], [5]. This background
material is included here only to provide a comparison with
the spectral-gap behavior for the periodic structure.

Fig. 3 shows a steepest descent plot (SDP) of the propa-
gation constant for the mode of a grounded slab (the
geometry is the same as in Fig. 1 without the strip grating).
The steepest descentplane is defined by the transformation

, where is the complex propagation constant.

(a)

(b)

Fig. 3. Steepest descent plot showing the solution for theTE2 mode of a
grounded dielectric slab with"r = 2:1 and thicknessa = 1:29 cm, as the
frequency is scanned from 5 to 20 GHz. (a) Lossless case. (b) Lossy case
with tan � = 10

�3.

Fig. 3(a) shows the solution locus for a lossless layer, while
Fig. 3(b) shows the locus for the same layer with a nonzero
loss tangent. In both figures, the extreme SDP (ESDP) curves
that cross the point , are shown as a pair of
dashed lines. These pathes separate the slow- and fast-wave
regions. Those regions adjacent to the vertical line
are slow-wave regions and the others are fast-wave regions.
Illustrative designations are shown in Fig. 3(a).

As seen in Fig. 3(a), for a lossless dielectric layer, the leaky-
mode solution crosses the ESDP as the frequency increases
(see direction of arrows) and enters the spectral-gap region
where the solution becomes a slow wave. Eventually it merges
with the conjugate solution on the line.
The two solutions then split to become a pair of improper
surface-wave solutions. One solution travels up on the
line and crosses the real axis to become a proper surface wave.
The other solution continues down as a nonphysical improper
surface wave. Below the splitting frequency, the conjugate
solution grows exponentially in the direction of propagation,
and is thus regarded as completely nonphysical.

When loss is added to the dielectric layer, these two
solutions no longer meet on the line, as shown in Fig. 3(b).
Instead, the original leaky-wave solution continues downward
after crossing the ESDP and approaches, but never exactly
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reaches, the line. The trajectory of the second solution ,
which is no longer the conjugate of the leaky-mode solution,
bends upward as the solution approaches the line. This
second solution crosses the real axis and shortly afterwards
enters the slow-wave region, where it becomes a physically
meaningful surface wave. Thus, the surface-wave solution is
the continuance of the nonphysical solution.

The spectral-gap behavior of the simple grounded dielectric
slab is typical of that usually seen for more complicated
nonperiodic leaky-wave structures [2]. The purpose of this
paper is to investigate the spectral-gap region of aperiodic
guiding structure, using the strip-grating structure in Fig. 1 as
the model.

III. D ESIGN CONSIDERATIONS

The structure in Fig. 1 is designed so that the fundamental
( ) space harmonic (which resembles a perturbed
parallel-plate waveguide mode) is a nonradiating slow wave.
Radiation occurs from the space harmonic, which
allows beam scan from backward to forward endfire.

In order to have single-beam operation over the entire
scan range from backward endfire to forward endfire, the
permittivity must be chosen large enough so that [3]

(1)

If is less than this value, the space harmonic will
become a fast wave (and, therefore, radiate) before the main
beam can be scanned to forward endfire.

IV. SOLUTION PROCEDURE

A. Network Representation

The analysis used here to obtain the propagation constant of
the structure is based on the transverse-resonance procedure.
The key element of the structure, namely the metal-strip
grating at the air–dielectric interface, is described in terms of
a novel multimode equivalent-network representation [6], so
that the transverse equivalent network (TEN) of the antenna is
easily obtained. The TEN for the structure is shown in Fig. 4.
Each transmission line connecting to the network represents
the -dependence of the fields of a particular space harmonic.
The elements of the coupling matrix in the TEN are given
by closed-form expressions, which are derived in [7]. See [7]
for detailed description.

A simple transverse-resonance equation (TRE) based on
the TEN in Fig. 4 is formulated and numerically solved to
obtain the complex propagation constant of the leaky wave.
The details, discussed in [3], are omitted here.

B. Branch Choice for the Space Harmonics

The strip grating excites an infinite set of space harmonics
with wavenumbers

(2)

Fig. 4. TEN representation of the structure shown in Fig. 1. The grating is
represented by a mutual coupling network, as described in [6].

where is the propagation wavenumber of the space
harmonic that corresponds to a perturbation of the dominant

mode of a parallel-plate waveguide structure. A different
branch choice of the transverse wavenumbers

(3)

is possible for each of the infinite number of space harmonics.
This contrasts with the two different branch choices for the
single wavenumber in the nonperiodic case. The most
convenient way to study the different solutions obtained by the
different choice of branches is to introduce a steepest descent
variable for each of the space harmonics, so that

(4)

(5)

This procedure is useful because no branch choices for the
transverse wavenumber are necessary in the SDP, since both
sheets of the plane get mapped onto the single-sheeted
plane. Both possible choices for the transverse wavenumber

are automatically included by allowing to assume all
possible locations in the SDP.

Because there is an infinite number of space harmonics,
there is an infinite number of solutions that are mathematically
possible, corresponding to different branch choices for the

wavenumbers. However, most of these solutions will not
have any physical meaning. For space harmonics that have

, the only physical choice for the wavenumber
is theproper one, for which . Therefore, to keep
the investigation tractable, the steepest descent representation
will be used for onlytwo of the space harmonics: and

, since two is the maximum number of space harmonics
that are likely to be in (or close to) the fast-wave region. The
steepest descent representation for these two space harmonics
is

(6)

(7)
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Fig. 5. The SDP, labeled to show the various characteristics in each of the
different strip regions.

The 1 and 2 space harmonics are allowed to migrate freely
in the corresponding SDP’s, so that all possible branch choices
for these space harmonics are automatically included in the
investigation. All other space harmonics are chosen to be
proper (decaying in the transverse-direction).

C. Properties of the SDP

The solutions obtained from the numerical procedure will be
plotted in the SDP for each of the two space harmonics that are
given steepest descent representations ( and ). To
aid in the physical interpretation of the results, a generic SDP is
first shown in Fig. 5, with labeling to indicate the nature of the
region. The notation means the mapping from the bottom
(improper) sheet of quadrant one of theplane; denotes
the mapping from the top (proper) sheet of quadrant one,
etc. Each region is labeled to indicate whether the solution is
decaying or growing in the direction of propagation, a forward
or backward wave, a proper or improper wave, and an outgoing
or incoming wave transversely. The regions between the ESDP
curves (dashed curves) and the vertical lines at and

are the regions that represent slow waves, while the
regions outside the ESDP curves represent fast waves.

The four regions that correspond to growing waves are
clearly nonphysical regions. Of the remaining four regions,
additional criteria must be used to ascertain the physical
significance of the modes. Region has physical signifi-
cance inside the slow-wave region, since this region does not
correspond to radiation. Region has physical significance
in the fast-wave region, since this is an improper region that
can support physical leaky modes. Region has physical
significance throughout the strip, since physical backward
waves are proper, regardless of whether they are fast or slow.
Region is not physical in any region, since a physical
backward wave should be proper. The shaded regions in Fig. 5
correspond to the regions where the waves are physical (all of

, and parts of , and ). In order for a mode to be
regarded as physical, all of the space harmonics must reside
in the physical regions of the SDP.

Fig. 6. (a) Steepest descent plot showing the four different solutions that are
obtained from the structure in Fig. 1, as the frequency is scanned from 46 to
58 GHz."r = 9; a = 0:14 cm, p = 0:338 cm, andd=p = 0:2. The solid
curves represent the solutions for then = �1 space harmonic and the dashed
curves represent the solutions for then = �2 space harmonic. (b) The same
plot, where only the physical solutions are shown.

When part of a region corresponds to physically meaningful
waves and the other part does not, the physical significance
of a mode is gradually lost as the mode crosses from the
physically meaningful part to the nonphysical part. This loss
in physical meaning is a central feature of the spectral gap.

V. NUMERICAL RESULTS

Using the analysis technique mentioned in the previous
section, the propagation constants for the different guided-
wave solutions that were found to exist have been obtained.
For all of the results shown here, the substrate thickness is

cm, the grating period is cm, and the
strip-width-to-period ratio is 0.2. The space
harmonic is taken as the main radiating harmonic.

A. Two Radiating Space Harmonics

Fig. 6(a) first shows results for the case as the
frequency is scanned from 46 to 58 GHz. In this case, (1) is
not satisfied and the space harmonic enters the fast-
wave region before the space harmonic is scanned
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to forward endfire. Four different solutions were found from
the numerical search:

1) red;
2) green;
3) magenta;
4) blue.

The solid curves show the solutions for the1 space har-
monic ( ) while the dashed curves show the corresponding
solutions ( ) for the 2 space harmonic. The ESDP curves,
which denote the boundaries between the fast-wave and slow-
wave regions, are also shown with dashed lines (see Fig. 5).

One feature of the solutions is that they come in conjugate
pairs, provided the dielectric layer in Fig. 1 is lossless. That is,
if is a valid solution for the set of space harmonics
that compose a modal solution, then is also a
valid solution. A proof of this is given in the Appendix. The
(red, green) and (magenta, blue) solutions form two conjugate
pairs. In the SDP, the conjugate pairs are mirror images about
the and lines.

The red solution in Fig. 6(a) is the solution that, at lower
frequencies, corresponds to the main radiating mode of the
structure. This solution exhibits the characteristics of the leaky-
mode solution for thelossydielectric layer in Fig. 3(b), even
though the dielectric in Fig. 1 islossless. This is because
radiation from the 2 harmonic introduces the equivalent of
a loss mechanism. At higher frequencies the1 harmonic of
this solution in region crosses the ESDP path (at 57.0 GHz)
and enters the spectral-gap region. As the frequency increases,
the 2 harmonic emerges from the slow-wave region near the

line in region (crossing the ESDP at 51.7 GHz) and
moves toward the origin, corresponding to a beam that scans
from backward endfire toward broadside. At the frequency at
which the 1 harmonic crosses the ESDP (57.0 GHz), the2
harmonic is well within the fast-wave region (outside of the
spectral gap near the line) and, hence, there is significant
radiation from this space harmonic even though the “main”
radiating harmonic is entering the spectral gap.

A noticeable bump in the solution occurs at approximately
53.6 GHz, before the 1 harmonic reaches the ESDP. This
bump corresponds to mode coupling between a set of space
harmonics of a forward-propagating mode (power flow in
the positive -direction) and a suitably related set of space
harmonics of a backward-propagating mode (power flow in the
negative -direction). In particular, the mode coupling occurs
between the 2 harmonic of the forward mode and the1
harmonic of the backward mode. It also occurs simultaneously
between all space harmonics which differ by unity, such as the

1 harmonic of the forward mode and the2 harmonic of
the backward mode. The mode-coupling frequency can easily
be predicted approximately from the -mode parallel-plate
waveguide formula. From this simple waveguide formula, it
can also be proven that the bump will occur before the1
harmonic is scanned to forward endfire if the2 harmonic
enters the fast-wave region before the1 harmonic reaches
forward endfire.

The green solution, which is the conjugate of the red one,
is a nonphysical solution since both the1 and 2 harmonics

stay within the nonphysical growing regions of the SDP, where
the waves increase in the longitudinal direction of power flow.

The magenta (reddish purple) solution corresponds to the
second solution in the lossy dielectric layer of Fig. 3(b).
This solution starts in the nonphysical growing regions, for
both the 1 and 2 harmonics, at lower frequencies. As the
frequency increases, the harmonics cross the real axis at the
same frequency of 56.6 GHz, and then enter theand
regions, respectively. When the1 harmonic first enters the

region, it corresponds to a fast surface-wave solution which
is nonphysical. At a higher frequency of 57.0 GHz, the1
harmonic enters the slow-wave region of and the modal
solution then corresponds to a physical surface-wave solution
(which is complex due to leakage from the space
harmonic).

The blue solution, the conjugate of the magenta solution,
has the 2 harmonic in a nonphysical region , since this
region corresponds to an improper backward wave (physical
backward waves should be proper). Hence, the blue solution is
not regarded as being physically significant at any frequency.

In summary, the red and magenta solutions are the only ones
for which portions of their curves lie in physically meaningful
regions of the SDP, and these two solutions exchange physical
meaning as the frequency increases and the modal solution
changes from a leaky mode to a surface-wave mode.

Fig. 6(b) is the same plot as Fig. 6(a), except that only
the physically meaningful solutions are plotted. The green
and blue solutions are omitted, since they correspond to
nonphysical solutions for all frequencies. For the1 harmonic,
the red solution is plotted only up to 57.0 GHz, since this
solution becomes nonphysical after the1 harmonic enters
the slow-wave region in . The magenta solution is plotted
only after 57.0 GHz, since this is the frequency at which the

1 harmonic enters the slow-wave region in to become
a physical surface-wave solution. For the2 harmonic, the
red solution is similarly plotted only for frequencies below
57.0 GHz. The magenta solution is plotted for frequencies
above 56.6 GHz instead of 57.0 GHz, since the length of
the curve is so small. The spectral-gap jump in the solutions
for these two space harmonics is seen to be much larger for
the 1 harmonic; for the 1 harmonic the solution changes
from leaky to bound across the spectral gap, whereas the2
harmonic remains leaky on both sides of the spectral gap.

B. A Single Radiating Space Harmonic

As the permittivity of the substrate is increased to ,
the frequency characteristics of the four solutions change
significantly, as shown in Fig. 7(a). In this case, (1) is satisfied
and the 2 harmonic of the red solution stays within the
slow-wave region of (and very close to the line)
until the 1 harmonic reaches forward endfire at 34.15 GHz.
The behavior of the harmonic in the spectral gap
resembles that of thelosslessdielectric layer in Fig. 3(a). A
splitting point now occurs at 34.15 GHz, where the red and
green solutions merge, as do the blue and magenta solutions.
After the merging of the 1 harmonic solutions, two pairs of
improper surface-wave solutions emerge. The1 harmonics
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Fig. 7. (a) Steepest descent plot for the same structure as in Fig. 6, but with a higher substrate permittivity ("r = 20). The frequency scan is from 30 to
38 GHz. The behavior is seen to be different from that shown in Fig. 6. (b) The same plot, where only the physical solutions are shown.

of the red and green solutions travel down the line, and
the magenta and blue solutions travel up the line and cross
the real axis to become physical surface-wave solutions. The
pairs of solutions are not distinguishable on the plot until the
mode-coupling bump occurs, at which the solutions separate
momentarily.

In Fig. 7(b) the plot is repeated with only the physical
solutions being plotted. As in Fig. 6(b), the green and blue
solutions are omitted, and the red and magenta solutions are
plotted only in the frequency ranges for which the solutions are
physical. The red solution is physical for frequencies below
approximately 34.15 GHz, where the1 harmonic enters
the slow-wave region in (almost immediately before the
splitting point). The magenta solution is physical above 37.4
GHz. Below 37.4 GHz, the 2 harmonic of the magenta
solution is in an improper region (above the real axis near
the line) even though it is a slow (and backward)
wave.

One interesting point in connection with Fig. 7(b) is that
there is a noticeable frequency region of about 3 GHz (between
34.15 and 37.4 GHz) over which none of the previous four
solutions have physical meaning. This initially surprising
observation led to a closer investigation of the solutions near
the spectral-gap region for high-permittivity substrates. It was
found, after careful examination, that anew solutionexists in
the frequency range where none of the previous four solutions
have physical meaning. This new solution is shown in the
color cyan (light blue) in Fig. 8, which presents a magnified
plot of the spectral-gap region for the case of Fig. 7
(the blue solution is omitted in this figure to enhance the
clarity). The new solution exists between 34.15–37.4 GHz. At
34.15 GHz, the new solution merges with the green solution,
and at 37.4 GHz it merges with the magenta solution. The

1 harmonic of this new solution lies on top of that of
the magenta solution between 34.15–37.4 GHz. However,
the 2 harmonic of the new solution is a physical wave
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Fig. 8. A magnified plot of the spectral-gap region for the same structure as in Fig. 7 ("r = 20), showing the different solutions that interchange
physical meaning as the frequency increases. The color cyan (light blue) is used to show a new solution, which does not exist for lower permittivity
substrates. The blue solution is omitted for clarity.

Fig. 9. A magnified plot of spectral-gap region for the same structure as in Fig. 7, but with a lower substrate permittivity ("r = 14). The frequency range
over which the new solution (cyan color) exists has decreased from the case in Fig. 8.

(backward and proper) while the2 harmonic of the magenta
solution is not physical in this frequency range (it is backward
and improper). Hence, only the new solution is physical in
this frequency range, and the red and magenta solutions are
physical outside this range, as discussed above in connection
with Fig. 7(b).

C. Results for Other Dielectric Constants and Strip Widths

Fig. 9 shows the same type of result as in Fig. 8 for the
case , and demonstrates that the frequency range over

which the new solution exists decreases as the permittivity is
lowered. The frequency range becomes vanishingly small as
the permittivity of the substrate approaches a critical value,
predicted approximately by (1) when the leakage rate is
small. For the lower permittivity case of Fig. 9, a noticeable
mode-coupling bump is also seen in the cyan solution, where
the solution momentarily departs from the and

lines, for the and harmonics,
respectively. In this mode-coupling region, the cyan solution
has a conjugate solution (mirror image about the
lines) which is not shown.
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Fig. 10 shows the spectral-gap behavior for two different
ratios of strip width to period, for the case. Only
the region near forward endfire for the harmonic is
shown in this figure, corresponding to a frequency scan of
32–37 GHz. As the amount of metal in the unit cell increases,
the four solutions come closer together [see Fig. 10(a)]. In
particular, the red and blue solutions move closer together,
as do the magenta and green solutions. In the limit, as the
strip width increases so that the structure becomes a perfect
parallel-plate waveguide, the four solutions merge together to
become two distinct solutions.

The transition in the spectral-gap behavior asis increased
from 9 to 13.5 is shown in Fig. 11, to examine how the spectral
gap changes character from the type shown in Fig. 6 to the
type shown in Fig. 7. The plots clearly indicate that asis
increased, the mode-coupling bumps in the solution are slowly
pushed out of the visible scan range. As the bumps move from
the leaky regions to the line, they draw together the four
solutions so that the conjugate pairs meet on the line.

D. Explanation for the New Solution Using
the Versus Diagram

For the case , discussed in Section V-B, we found
that for frequencies immediately above the spectral-gap region
for the space harmonic, none of the four solutions
shown in Fig. 7 is physically valid. Instead, a new solution,
called the cyan (light blue) solution, is the physical solution.
This new solution is purely real (except in the mode-coupling
region) and transversely bound, but it is present for only
a small frequency range, after which the magenta solution
(having a complex propagation constant) becomes physically
valid. This behavior is different from that for a dielectric
layer, where a purely real and bound solution is present and
physically valid (as a surface wave) for all frequencies above
the spectral gap. In this section, the finite range in frequency
for the existence of the cyan solution for the periodic structure
is explained in terms of the versus diagram, where the
need for such behavior becomes immediately evident.

The versus diagram, which is a modification of the
versus diagram for closed guides (traveling-wave microwave
tubes, primarily), and is also related to Brillouin diagrams,
takes the form seen in Fig. 12 when applied to open structures.
The quantities and are normalized to the period in
Fig. 12, so that the abscissa is expressed simply in multiples
of . The diagram is periodic in , but only the first
two sections are shown here. The plotted values in Fig. 12
correspond to the and cases, and the
dimensional parameters, which are the same for each case, are
those presented in the caption for Fig. 6. Only those solutions
that are physical are included in Fig. 12.

If the solution for a particular space harmonic is located in
any of the triangles (only two of which, centered at ,
are shown in Fig. 12), all of the other space harmonics are
also located within the triangles, since the values for the
different space harmonics differ from each other by , with

as an integer. In this case, all the space harmonics are in
the slow-wave region, and the physical mode is purely bound,

Fig. 10. Steepest descent plot showing the effect of changing the
strip-width-to-period ratiod=p on the spectral-gap behavior of the structure
in Fig. 1. All parameters are the same as in Fig. 7 except that the strip width
d is varied to obtain differentd=p ratios. (a)d=p = 0:7: and (b)d=p = 0:2.
The frequency scan is from 32 to 37 GHz in both cases.

with a purely real propagation wavenumber. These triangles
may, therefore, be called “bound-mode triangles.” If, on the
other hand, a space harmonic is located in the central region
bounded by the 45 lines (the region that looks like a large
V), the space harmonic corresponds to a fast wave. In this
region, the space harmonic possesses a complex propagation
constant and corresponds to a radiating leaky wave. This V-
shaped region is called the “radiation region.” Lastly, if a space
harmonic is located in a region outside of either the bound-
mode triangles or the radiation region, that harmonic is a slow
wave with a complex propagation wavenumber (due to the
fact that another space harmonic lies in the radiation region);
its transverse field behavior is decaying, but power is coming
into the structure.

For the case, it is seen that at lower frequencies the
harmonic of the red solution is in the radiation region.

As the frequency is increased to 34.15 GHz, the spectral gap
is reached; the red solution then loses physical significance
and the cyan solution emerges as the physical surface-wave
solution. Over this same frequency range the harmonic
lies first in the region outside of either the bound-mode
triangles or the radiation region; the harmonic is slow, but
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Fig. 11. Steepest descent plot showing the transformation in the spectral-gap behavior as"r is changed in the structure of Fig. 1. All parameters are
the same as in Fig. 6 except for"r. (a) "r = 9. (b) "r = 13. (c) "r = 13:2. (d) "r = 13:5. The frequency scan is from 39 to 46 GHz for all
parts except (a), where it is from 46 to 58 GHz.

its propagation wavenumber is complex because the
harmonic is radiating. At 34.15 GHz, the harmonic
also reaches the spectral gap, after which the solution changes
from red to cyan and lies within a bound-mode triangle.
Similarly, all the space harmonics will then be located within
the bound-mode triangles, and the complete modal solution is
thus totally bound and real (not complex) except for a small
range of frequencies corresponding to mode coupling. (Mode
coupling occurs at , where a small bump, hardly
noticeable, in the cyan solution is observed.) If we continue
the curve for the solution, it is seen that it goes
out of the bound-wave triangle at 37.4 GHz, meaning that
the physical solution is one that is now complex, because
the harmonic is now radiating. At 37.4 GHz, the

harmonic enters the radiation region at backward
endfire. For frequencies above 37.4 GHz, the magenta solution
is the physical one.

It is seen that the cyan solution represents the range of
frequencies for which all the space harmonics lie within the
bound-mode triangles, and that the range is finite because the

harmonic begins to radiate after 37.4 GHz.
The versus plot also readily explains the behavior in

Fig. 9, which holds for . It was shown in Section V-
C that for the smaller value of (14 instead of 20) the

frequency range over which the cyan solution exists becomes
significantly reduced (from greater than 3 GHz to less than
1 GHz). We can see from Fig. 12 that lowering the dielectric
constant raises the curves (comparing the cases for
and ), so that the curves for would rise higher
within the bound-mode triangles, thereby reducing the cyan
range within these triangles.

For the case, the dispersion plot in Fig. 12 is very
different. As before, the 1 harmonic of the red solution
is in the physical radiation region at lower frequencies. As
the frequency is increased to 51.7 GHz, the2 harmonic of
the red solution also enters the physical radiation region at
backward endfire. At about 53.6 GHz, i.e., at , a bump
occurs in the red solution (hardly noticeable in this figure, but
clearly visible in the SDP) due to mode coupling, as explained
in Section V-A. As the frequency is further increased to
57.0 GHz the 1 harmonic reaches the spectral gap and then
leaves the physical radiation region; the magenta solution then
corresponds to the physical mode. The1 harmonic of the
magenta solution is complex, but not radiating, while the
corresponding 2 harmonic is radiating. Above 57.0 GHz, the

1 harmonic of the magenta solution has the same character
as that for the 1 harmonic in the case beyond
37.4 GHz.
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Fig. 12. k0p versus�p diagram for the structure in Figs. 6 and 7 ("r = 9 and"r = 20). Only the physical solutions are shown in each frequency region.
The� 45� lines show the physical radiation region, and the two lower triangles show the regions in which a physical solution is purely bound. For"r = 20,
the plot readily shows why the cyan (light blue) solution is physically valid over only a finite frequency range.

VI. CONCLUSIONS

The spectral-gap behavior at forward endfire for a periodic
strip-grating leaky-wave structure has been studied and
compared with that for a simple grounded dielectric slab.
The present study has revealed a number of new and
interesting features. First of all, the nature of the spectral
gap itself depends on whether a second space harmonic

does or does not begin to radiate before the
main radiating space harmonic reaches forward
endfire. In the first case, when it does, the spectral gap
resembles in form that of alossy dielectric layer; in the
second case, it resembles that of alosslessdielectric layer.
Numerical calculations were made to cover both cases in
detail, and also to follow the changes in behavior as one
goes from one case to the other. The calculations were made
using a rigorous equivalent-network representation for the
strip-grating structure, which permitted rapidly convergent
results to be obtained. The results were calculated and
displayed on the SDP so that all possible solutions could
be obtained without requiring branch-cut choices to be
made beforehand.

The presence of the additional space harmonics introduced
by the periodicity of the periodic structure leads to certain
very important new features in the dispersion behavior. We
should first recognize that there is no counterpart in the simple
losslessdielectric layer for the case for which the
space harmonic is already propagating when the
space harmonic reaches forward endfire. The resulting spectral
gap resembles in form that found for alossydielectric layer,
because the additional radiating space harmonic supplies the
equivalent of “loss” to the system, but the overall behavior is

more complicated for the periodic structure, and of course the
physics is rather different. This is the first time this case has
been treated in the literature.

In the case for which the space harmonic is the
only radiating space harmonic when it reaches forward endfire
(when the spectral gap occurs), there is also an important
difference from the dielectric layer behavior. For the dielectric
layer, the mode is leaky on the low-frequency side of the
spectral gap, but it is purely bound (with a real wavenumber)
on the high-frequency side. Furthermore, this bound solution,
in the form of a surface wave, remains for all higher frequen-
cies. In the above-mentioned periodic-structure case, similar
behavior occurs in the immediate vicinity of the spectral
gap, but this type of bound solution exists only for a small
frequency range, until the space harmonic reaches
backward endfire and then radiates. Above this frequency,
the space harmonic remains a slow wave, but has
a complex wavenumber with power coming in transversely.
Again, this behavior does not have a counterpart in a simple
dielectric layer.

All of these considerations, and others, were discussed and
illustrated in detail in this paper.

APPENDIX

In this appendix the conjugate property of the modal so-
lution for the periodic strip-grating structure is proved. That
is, if the wavenumbers represent a valid solution,
then a second valid solution will be the set of wavenumbers

. This establishes that a second valid solution is
the mirror image of the first one about the lines in the
SDP.
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In the SDP, the wavenumbers can be represented as

(A1)

(A2)

where

(A3)

Using (A3), (A1) and (A2) can be expanded as

(A4)

(A5)

In order to prove the conjugate property of the solution, it is
required to show that satisfies the original TRE,
given by

(A6)

where the reference plane (at ) is located immediately
outside the mutual coupling network on the port corresponding
to (see Fig. 4). is the input impedance looking into
the mutual coupling network at that location.

For a TE mode, the characteristic impedance of the structure
in the air region is given by

(A7)

Hence, the transformation leads to the following
transformation of the first term:

(A8)

The second term gets transformed to

(A9)

which is equivalent to since
. Hence, the second term becomes

(A10)

All of the elements of the mutual coupling network
are pure imaginary for a lossless grating. These elements are
constants, and are not affected by the wavenumber substitution.
However, it can be assumed that

(A11)

since the impedance elements are purely imaginary. Hence,
, the impedance looking into the port of the

network, gets replaced by . Therefore, in view of
(A8), (A10), and (A11), if is replaced by , the TRE
gets transformed to

(A12)

Taking the conjugate of the above equation, we obtain

(A13)

which is the original TRE. Hence, if is a solution
of the TRE, then also satisfies the same TRE.
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